A. Factoring out common factors

Find the common factor and take it out.
Example 1: Factor $6 x^{3}-4 x$. The common factor is $2 x$, thus we have $6 x^{3}-4 x=2 x\left(3 x^{2}-2\right)$
Example 2: Factor $2 x(x-2)+3(x-2)$. We have a linear common factor $(x-2)$, thus we have $2 x(x-2)+3(x-2)=(x-2)(2 x+3)$

B. Factoring Special Polynomials Forms

Factored Form

Difference of Two Squares

$a^{2}-b^{2}=(a+b)(a-b)$

Example

Perfect Square Trinomial

$\begin{array}{ll}a^{2}+2 a b+b^{2}=(a+b)^{2} & x^{2}+6 x+9=(x+3)^{2} \text { where } a=x \text { and } b=3 \\ a^{2}-2 a b+b^{2}=(a-b)^{2} & x^{2}-6 x+9=(x-3)^{2} \text { where } a=x \text { and } b=3\end{array}$
Sum or Difference of Two Cubes

$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$	$x^{3}+8=x^{3}+2^{3}=(x+2)\left(x^{2}-2 x+4\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$	$x^{3}-8=x^{3}-2^{3}=(x-2)\left(x^{2}+2 x+4\right)$

Note: Remember a, b or both could be represented as a product of other factors or a linear factor, then you have to figure out what is a and b.

Example: $(x+2)^{2}-16 x^{4}$. Observe that $a=(x+2)$ and $b=4 x^{2}$. Applying the Difference of Two Squares formula, we have
$(x+2)^{2}-16 x^{4}=(x+2)^{2}-\left(4 x^{2}\right)^{2}=\left[(x+2)+4 x^{2}\right]\left[(x+2)-4 x^{2}\right]$ $=\left(x+2+4 x^{2}\right)\left(x+2-4 x^{2}\right)$

C. Trinomials with Binomial Factors

To factor a trinomial of the form $a x^{2}+b x+c$, use the pattern below

> Factors of a
> Factors of c

- Factoring a Trinomial: Leading Coefficient Is 1

Since $a=1$, we have $x^{2}+b x+c=(x+)(x+1)$
So, we are looking for two factors of c which give us sum of b.
Example: Factor $x^{2}-7 x+12$

PRODUCT $c=12$		SUM $b=-7$
1	12	13
2	6	8
3	4	7
-1	-12	-13
-2	-6	-8
-3	-4	-7

Observe that only factors -3 and -4 work since the product and the sum satisfy $c=12$ and $b=-7$. Thus, we have $x^{2}-7 x+12=(x-3)(x-4)$

- Factoring a Trinomial: Leading Coefficient Is Not 1

Example: Factor $2 x^{2}+x-15$
a) Factoring using BOX method

Factors of $a c=2(-15)=-30$		Sum $b=1$
1	-30	-29
-1	30	29
2	-15	-13
-2	15	13
3	-10	-7
-3	10	7
5	-6	-1
-5	6	1

Table 2

So, two factors that give us the product of -30 and the sum of 1 are -5 and 6 .
Use the following box to set up everything (GCF is Greatest Common Factor).

GCF	First Term	Factor 1
GCF	Factor 2	Last Term

Table 3

So we have
GCF

x	$2 x^{2}$	$-5 x$	$2 x-5$
3	$6 x$	-15	$2 x-5$

Notice that after factoring x, we get $2 x-5$ on the first row, and after factoring 3 , we also get $2 x-5$ on the second row. So, we have
$2 x^{2}+x-15=(x+3)(2 x-5)$

a) Factoring by grouping

Using Table 2 , we rewrite the middle term as $-5 x+6 x$. So we get
$2 x^{2}+x-15=2 x^{2}-5 x+6 x-15$
Then we factor the polynomial by grouping: GCF for the first group $2 x^{2}-5 x$ is x and GCF for the second group $6 x-15$ is 3 . So, we have

$$
2 x^{2}+x-15=2 x^{2}-5 x+6 x-15=x(2 x-5)+3(2 x-5)=(2 x-5)(x+3)
$$

b) Factoring using trial and error method

Factors of the first term		Factors of the second term	
x-term	constant	x-term	constant
1	2	1	15
		3	5

Table 5

Following rules of multiplication of two factors, we must get the first term $2 \boldsymbol{x}^{2}$, the middle term \boldsymbol{x}, and the last term - $\mathbf{1 5}$.

Since we have only two factors for the first term, then we have $m=1$ and $n=2$ or vice versa.
For the last term we have two possible factors, 1 and 15 or 3 and 5 , thus we try both possibilities switching factors to get middle term \boldsymbol{x} :

Trying 1 and 15

Middle term is $2 x \pm 15 x$ which doesn't give us \boldsymbol{x}

Middle term is $\mathbf{3 0 x} \pm \boldsymbol{x}$ which doesn't give us \boldsymbol{x}

Trying 3 and 5

Middle term is $10 x \pm 3 x$ which doesn't give us \boldsymbol{x}

Middle term is $6 x \pm 5 x$ which does give us x when $6 x$ is positive and $5 x$ is negative:
$6 x-5 x=x$
Thus we have $2 x^{2}+x-15=(x+3)(2 x-5)$

