

ALGEBRA

STEM SC

A. Factoring out common factors

Find the common factor and take it out.

Example 1: Factor $6x^3 - 4x$. The common factor is 2x, thus we have $6x^3 - 4x = 2x(3x^2 - 2)$ **Example 2:** Factor 2x(x - 2) + 3(x - 2). We have a linear common factor (x - 2), thus we have 2x(x - 2) + 3(x - 2) = (x - 2)(2x + 3)

B. Factoring Special Polynomials Forms

Factored Form	Example
Difference of Two Squares	
$a^2 - b^2 = (a+b)(a-b)$	$9x^2 - 4 = (3x + 2)(3x - 2)$
Perfect Square Trinomial	
$a^2 + 2ab + b^2 = (a+b)^2$	$x^{2} + 6x + 9 = (x + 3)^{2}$ where $a = x$ and $b = 3$
$a^2 - 2ab + b^2 = (a - b)^2$	$x^{2} - 6x + 9 = (x - 3)^{2}$ where $a = x$ and $b = 3$
Sum or Difference of Two Cubes	
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	$x^{3} + 8 = x^{3} + 2^{3} = (x + 2)(x^{2} - 2x + 4)$
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	$x^3 - 8 = x^3 - 2^3 = (x - 2)(x^2 + 2x + 4)$

Note: *Remember a, b or both could be represented as a product of other factors or a linear factor, then you have to figure out what is a and b.*

Example: $(x + 2)^2 - 16x^4$. Observe that a = (x + 2) and $b = 4x^2$. Applying the Difference of Two Squares formula, we have $(x + 2)^2 - 16x^4 = (x + 2)^2 - (4x^2)^2 = [(x + 2) + 4x^2][(x + 2) - 4x^2]$ $= (x + 2 + 4x^2)(x + 2 - 4x^2)$

csusm.edu/stemsc Tel: STEM SC (North): (760) 750-4101 STEM SC (South): (760) 750-7324

Table 2

C. Trinomials with Binomial Factors

To factor a trinomial of the form $ax^2 + bx + c$, use the pattern below

$$ax^{2} + bx + c = (x + y)(x + y)$$
Factors of c

• Factoring a Trinomial: Leading Coefficient Is 1

Since a = 1, we have $x^2 + bx + c = (x +)(x +)$ Factors of c

So, we are looking for two factors of *c* which give us sum of *b*.

Example: Factor $x^2 - 7x + 12$

PRODUCT $c = 12$		SUM $b = -7$	Table 1
1	12	13	
2	6	8	
3	4	7	
-1	-12	-13	
-2	-6	-8	
-3	-4	-7	

Observe that only factors -3 and -4 work since the product and the sum satisfy c = 12and b = -7. Thus, we have $x^2 - 7x + 12 = (x - 3)(x - 4)$

• Factoring a Trinomial: Leading Coefficient Is Not 1

Example: Factor $2x^2 + x - 15$

a) Factoring using BOX method

Factors of $ac = 2(-15) = -30$		Sum $b = 1$
1	-30	-29
-1	30	29
2	-15	-13
-2	15	13
3	-10	-7
-3	10	7
5	-6	-1
-5	6	1
Factor 1	Factor 2	

csusm.edu/stemsc

Tel: STEM SC (North): (760) 750-4101 STEM SC (South): (760) 750-7324

So, two factors that give us the product of -30 and the sum of 1 are -5 and 6.

Use the following box to set up everything (GCF is Greatest Common Factor).

GCF First Term		Factor 1	Table 3
GCF	Factor 2	Last Term	

So we have

GCF

Х	$2x^{2}$	-5x	2x - 5	Table 4
3	6 <i>x</i>	-15	2x - 5	

Notice that after factoring x, we get 2x - 5 on the first row, and after factoring 3, we also get 2x - 5 on the second row. So, we have

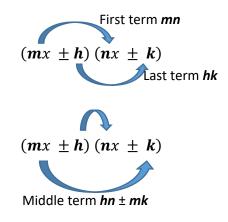
 $2x^2 + x - 15 = (x+3)(2x-5)$

a) Factoring by grouping

Using Table 2, we rewrite the middle term as -5x + 6x. So we get

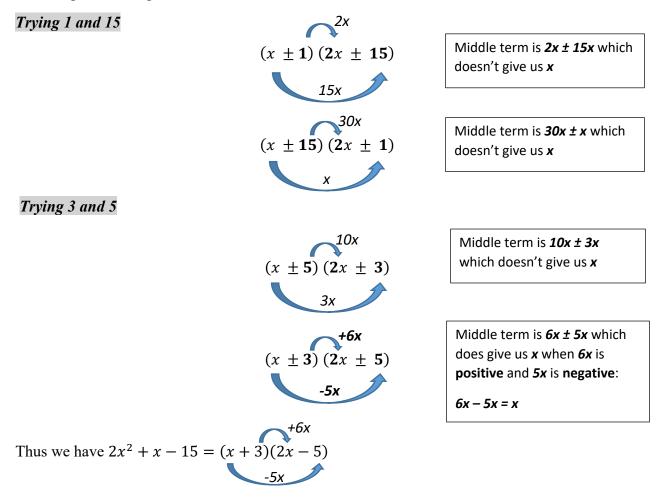
 $2x^2 + x - 15 = 2x^2 - 5x + 6x - 15$

Then we factor the polynomial by grouping: GCF for the first group $2x^2 - 5x$ is x and GCF for the second group 6x - 15 is 3. So, we have


$$2x^{2} + x - 15 = 2x^{2} - 5x + 6x - 15 = x(2x - 5) + 3(2x - 5) = (2x - 5)(x + 3)$$

b) Factoring using trial and error method

Factors of the first term		Factors of the second term		Table 5
x-term	constant	x-term	constant	
1	2	1	15	
		3	5	



Following rules of multiplication of two factors, we must get the first term $2x^2$, the middle term x, and the last term -15.

Since we have only two factors for the first term, then we have m = 1 and n = 2 or vice versa.

For the last term we have two possible factors, 1 and 15 or 3 and 5, thus we try both possibilities switching factors to get middle term x:

